schnerzingerLOGO_R-black

VIVA LA RESOLUTION!

RESOLUTION LINE

GRENZENLOSE AUFLÖSUNG, UNFASSBARE GESCHWINDIGKEIT

Our new cable line has it all and has already become another milestone in the Schnerzinger history. After intensive and elaborate development work, we have succeeded in merging musicality and resolution to such an extent that you will be completely thrilled by this unique synergy. Experience an emotional musical experience - very close to the music - and with limitless resolution!

EXPERIENCE MUSIC ULTIMATELY PURE

LET GO AND DELVE INTO THE SOUND - WITHOUT ANY LIMITS

A NEW HEIGHT OF AUDIO INDULGENCE

INCREDIBLY PRECISE
UNVEILING MYRIAD NUANCES

It's the small and subtle things that inspire. Especially when everything sounds completely natural and coherent. With the RESOLUTION LINE, we succeeded in completely redefining terms such as microdynamics and fine detail. The music is resolved in such a boundless way that it hardly seemed possible before. With breathtaking clarity, even the smallest nuances become perceptible, filling your music with new life

A LUXORIUS SOUND BATH

UNWEAVING SPATIAL INFORMATION, AUTHENTIC & PURE

To be completely absorbed and in perfect unison with the sound - it could not get any better! For this reason, we do not compromise when it comes to sonic spatiality. With RESOLUTION LINE, we have managed to reproduce the sound space present in the music so authentically and naturally that you have the feeling of being right there during the recording.

WITHIN THE PULSE OF MUSIC

ULTRAFAST AND TEMPERAMENTAL

Music follows its natural flow and its very own inner truth. The dedication that musicians put into their music is essential for a thrilling musical experience. Enjoy the feeling that nothing stands between you and the music. Pure passion and unbridled musical temperament - just the way it should be. With RESOLUTION LINE, this can be experienced truly.

INSPIRED AND COMPLETELY FREE

HARMONIC INTERPLAY
VIVID AND LIVELY TIMBRES

Truly experiencing the soul of an instrument and the human voice - there is probably nothing more beautiful in audiophilia. A unique symbiosis of inner and outer resonance, timbres and acoustic beats give every music its unique soul. With RESOLUTION LINE it can naturally unfold completely, sounds can resonate clearly and unhindered. Look forward to an incomparably authentic musical experience that really inspires.

RESOLUTION LINE

unmatched musical resolution & uncompromising authority

HIGH TECH
in audiophiler Bestform

A DECISIVE FOUNDATION &
SYNERGY

A DECISIVE FOUNDATION &
SYNERGY

Atomic Bonding

Das Geheimnis der SCHNERZINGER Kabeltechnologie liegt im ATOMIC BONDING. Durch diese zeitintensiven, mehrmonatigen Formatierungsprozesse wird eine überragende und dauerhafte Leitermaterialgüte erzielt, die sich in allen klangrelevanten Kriterien noch einmal deutlich selbst von den besten cryogen behandelten monokristallinen OCC Leitermaterialien abhebt.

BEST CHANNELING &
SIGNAL PROTECTION

BEST CHANNELING &
SIGNAL PROTECTION

Bidirectional Barrier

SCHNERZINGER CABLE and POWER products are designed to work with a BIDIRECTIONAL BARRIER, which blocks or diverts radiated interference fields via the power supply, cables and components. The effectiveness of the BIDIRECTIONAL BARRIER can be further enhanced in critical environments by optional accessories.

RESOLUTION FÜR JEDE KOMPONENTE

SCHÖPFEN SIE DAS KLANGLICHE potential ihrer anlage voll aus

RESOLUTION LINE SPEAKER
mit Spade Terminal Anschluss und optionalem SIGNAL- UND CABLE PROTECTOR für eine kompromisslose Signalübertragung durch Schutz vor externen und internen Störfrequenzen
RESOLUTION LINE POWER
mit CABLE PROTECTOR – für eine absolut störungsfreie Stromübertragung
RESOLUTION LINE RCA analog
wahlweise mit CABLE UND SIGNAL PROTECTOR – für eine absolut störungsfreie Signalübertragung durch Schutz vor internen und externen Störfrequenzen
RESOLUTION LINE XLR
Interconnect für störungs- und verlustfreie Verbindung zwischen Ihren Komponenten
RESOLUTION LINE RCA DIGITAL
mit SIGNAL UND CABLE PROTECTOR – für eine absolut verlust- und störungsfreie Übertragung Ihrer digitalen Signale
Previous slide
Next slide

VIER QUALITÄTSGRADE

PERFEKT an ihre bedürfnisse ANGEPASST

Jede Hifi Anlage ist unterschiedlich und auch die Ansprüche sind verschieden. Aus diesem Grund haben wir unsere RESOLUTION LINE so konzipiert, dass für jedes Bedürfnis die passende Qualitätsstufe verfügbar ist. Die Signatur der RESOLUTION LINE ist bei allen Varianten unverkennbar. Jedoch ermöglichen bei den höheren Qualitätsgraden noch aufwändigere Herstellungsverfahren und hochpräzise Feinabstimmungen eine unübertroffene Signalübertragung, welche selbst allerhöchste Ansprüche übertrifft.

REINSTER MUSIKGENUSS GARANTIERT

DREAMTEAM DER EXTRAKLASSE: SIGNAL und CABLE PROTECTOR

KONSEQUENTER SIGNALSCHUTZ

SIGNAL PROTECTOR

For the first time, SCHNERZINGER offers the new SIGNAL PROTECTOR as an optional accessory for the RESOLUTION LINE: an effective power amplifier for diverting internal interference fields that have penetrated the signal path to the outside.

The SIGNAL PROTECTOR combats the electrical interference fields penetrated via mixed cables or hi-fi equipment, defuses and de-stresses the upper frequency range and the overtone spectrum. It thus enables the incomparable naturalness of the reproduction with the highest possible resolution at the same time.

EFFEKTIVE KABELPROTEKTION

CABLE PROTECTOR

Unser CABLE PROTECTOR ist ein effektiver Leistungsverstärker für den Ableitungseffekt der äußeren, in den Signalweg eingedrungenen Störfelder. Diese werden vor Allem durch Hochfrequenzen im Giga- und Megaherzbereich verursacht, wie beispielsweise WLAN, DECT, Mobilfunkfrequenzen etc.

Der CABLE PROTECTOR bekämpft diese Störfelder, entschärft und entstresst den oberen Frequenzbereich und das Obertonspektrum. Er ermöglicht so die unvergleichbare Natürlichkeit der Wiedergabe bei gleichzeitig höchstmöglicher Auflösung.

TESTIMONIALS

BETTER SKIN - time-correct signal transport without electronic carry-over effect

The BETTER SKIN technology ensures an almost uniform flow of all frequencies due to the special surface coating within the SCHNERZINGER ATOMIC BONDING process, thus combining the advantages of different designs without accepting their disadvantages.

SKIN EFFEKT- Frequency-dependent signal transport in the conductor

Ein wichtiger klangrelevanter Faktor ist der sogenannte Skin Effekt. Dieser lässt sich stark vereinfacht wie folgt erläutern: Hohe Frequenzen fließen nahe der Oberfläche, mittlere und tiefe Frequenzen mehr zur Mitte des Leiters orientiert.

For a nearly lossless transport of high frequencies, often flat wire resp. foil conductor, hollow conductor or litz wire (often several distinct isolated strands with very small width) are disposed.

Diese Konstruktionen begünstigen – mit ihren großen Oberflächen und geringem Kernanteil – den Transport von hohen Frequenzen, erschweren aber unserer Erfahrung nach gerade dadurch die gewünschte gleichmäßige Durchleitung von tiefen, mittleren und hohen Frequenzen. Trotzdem oder deshalb werden sie oft zuerst als hochauflösender und offener empfunden. Für eine zeitrichtige, natürliche und nicht künstlich betonte Darstellung des oberen Spektrums ist es unserer Meinung nach von elementarer Bedeutung, dass alle Frequenzen ganzheitlich transportiert werden.
Einige dieser Kabelbauformen neigen außerdem zu tendenziell höheren, kapazitiven Werten, worauf bestimmte Gerätekombinationen leider mit unvorhersehbaren klanglichen Auswirkungen reagieren.

A performance displaced to higher frequencies may be perceived – as mentioned above – as more dynamic and three-dimensional and having higher resolution, but from our experience this is accountable for the so-called hyper hi-fi sound; soon the listener will be stimulated to yet another compensating action and so forth. 

DIE VORTEILE DES SCHNERZINGER DIELEKTRIKUMS

SCHNERZINGER uses a special, air-filled material as dielectric, which - unlike PTFE or Teflon, for example - is applied to the wire while avoiding structurally damaging temperatures and yet is completely stable. Combined with the special SCHNERZINGER process of DIELECTRIC CHARGING, it shows better dielectric and sound properties than pure PTFE, FEP, cotton, linen, silk or even air.  In addition, it is absolutely leak-proof and thus offers reliable long-term protection of the conductors against oxidation....

DIELECTRIC

To prevent electrical short circuits between the wires, they must be insulated. The insulation material, also called dielectric, has an enormous influence on the transmission quality of audio cables. Pure air is theoretically the best dielectric, but it does not insulate. However, in the case of cables marketed in the audio sector with air or AIR insulation, for example, the individual conductor wires are provided with an insulating layer of varnish, which has significantly poorer dielectric values than PTFE, for example. In addition, this insulating layer is often applied using structurally damaging high-temperature processes, which often negatively affect the quality of the conductor's material structure. This is clearly not the case with SCHNERZINGER.

Our test runs utilizing various isolators – starting with best polyethylene PTFE, FEP, across foamed material, natural fabric, like unbleached cotton or silk up to extremely expensive and exotic approaches with costly inert gas and specifically deployed battery voltage - confirm the enormous importance of the often underestimated dielectric.  

However, the contradiction between high insulation on the one hand and lowest storage capacity on the other hand could not be solved so satisfactorily with any of these approaches that it did not lead to a limitation of the performance potential of the SCHNERZINGER SIGNAL CONDUCTOR.

DIELECTRIC CHARGING

Erst ein zeitaufwändiger Prozess, das DIELECTRIC CHARGING, der dem Haften („Parken“) der Ladungen auf dem Dielektrikum entgegenwirkt, brachte SCHNERZINGER den entscheidenden Fortschritt und Durchbruch.

To better illustrate this sound-degrading memory effect, one can imagine that the individual signals flowing through a wire are attracted to the dielectric, "park" there, and are carried away again by subsequent signals.

SCHNERZINGER research shows that this effect results in a slowed down, time-delayed electron flow, counteracting the crucial target of time correct and integrated signal processing.

Therefore an ideal isolation material is a dielectric without both attractive and buffer effect; a requirement profile, many manufacturers work on with major effort.

Der Produktionsprozess des DIELECTRIC CHARGING wirkt quasi dem Speichereffekt direkt entgegen und sorgt somit für einen zeitrichtigen und ungebremsten Signalfluss, der für eine unbeeinträchtigte Wiedergabequalität unerlässlich ist. Selbst ohne Dielektrikum betriebene, also mit reiner Luft umgebene Drähte, hatten gegenüber dem DIELECTRIC CHARGING klanglich das Nachsehen!

For a simple understanding of DIELECTRIC CHARGING, you can imagine a road with many intersections: 

It is not by improving the road surface, but by reducing the number of intersections that one achieves significant progress toward unimpeded traffic flow.

BACKGROUND 

In theory electrical signal propagates in vacuum with the speed of light (c). Cable connection limits the speed, copper conductor for example to about 9/10 of the speed of light. The ration of actual speed to speed of light is known as speed factor VOP (Velocity Propagation Factor). This number describes the transmission speed of a material compared to the speed of light in vacuum in percent.

Here even foamed PTFE reaches 85% only.

Material                                 VOP

Geschäumtes PTFE                85%

FEP                                         69%

Silikon                                53-69%

TFE                                         69%

Polyethylen                             66%

PVC                                   35-58%

Nylon                                 47-53%

ATOMIC BONDING vs. Monocrystalline OCC und UPOCC Leitermaterial

In contrast to the often only temporarily effective advantages of established treatment and manufacturing processes on the reproduction quality of high-quality audio cables, e.g. cryogenization or OCC or UPOCC casting processes, SCHNERZINGER cables with ATOMIC BONDING conductors enable an audibly purer and unrivaled true-to-life signal transmission - and this permanently! 

Um den wesentlichen Vorteil der SCHNERZINGER ATOMIC BONDING Technologie gegenüber üblichen Verfahren zu erkennen, bedarf es etwas Hintergrundwissen über die industrielle Verarbeitung von Drähten, die als Leitermaterial im Audiobereich verwendet werden:

CONVENTIONAL CASTING METHODS:

To manufacture the conductor material in most audio cables, thick copper or silver strands are repeatedly drawn through so-called drawing dies until the wires are thin enough for further use. Every drawing process means enormous mechanical stress, which causes the crystalline grain structure of the wires to disintegrate into many crystals. In a sense, the audio signals have to find their way through many of these grain structures. The flow through the grain boundaries from grain to grain creates an enormous resistance potential every time, which is known to cause slowed signal transport.

The more complex casting process is therefore often used for higher-quality audio cables. Here, liquid copper or silver is continuously poured into molds, which results in longer grain structures. In the even more complex monocrystalline OCC or UPOCC (Ultra-Pure Ohno Continuous Casting) process, the molds are even heated and slowly cooled to prevent the material from solidifying too quickly. This process was developed by Prof. Ohno in the 1980s for industry so that fewer cracks occur in the sheet metal when the copper strands are rolled out

INNOVATIVE APPROACH WITH ATOMIC BONDING:

SCHNERZINGER ATOMIC BONDING, on the other hand, takes a completely different approach:

To easily get the idea of the innovative development approach ATOMIC BONDING, simply envision a conducting wire as a pipe filled with ice cubes, whereby the ice cubes symbolically illustrate the inner grain structure of the wire.

Since long-chain metal structures are quite sensitive and easily disintegrate again after the manufacturing process, e.g. due to vibrations and bending processes, ATOMIC BONDING is a technologically extremely complex process which does not aim at bonding individual ice cubes to form a closed, long-chain monostructure, but on the contrary at crushing the cubes. This results in the smallest ice structure components, which can subsequently be compressed into a stable, homogeneous ice mass with very high cohesive forces in the tube.

A compacted, fused mass of ice has a closed, extremely stable structure - without any gaps. This fact forms the basis for a highly pure and perfect impulse chain - for a true-to-life signal transmission.

BIDIRECTIONAL BARRIER - KONKURRENZLOSER STÖRFELDSCHUTZ

Each SCHNERZINGER cable is designed to provide unique and effective protection of the signal against both low-frequency and high-frequency interference - without reducing the signal bandwidth and signal speed in the slightest - with its BIDIRECTIONAL BARRIER.

By foregoing the use of compromising dummy solutions such as capacitors, diodes, parallel or series filters, which are often used in common market solutions, SCHNERZINGER CABLES transport the audio signal with breathtaking and hitherto unattained authenticity and information density. Electronic braking and carry-over effects are reduced to a maximum, the bad influence of high-frequency interference fields on the quality of the reproduction is effectively prevented.

The double interference field protection of the BIDIRECTIONAL BARRIER blocks and stops 

  • the introduction of external interference fields radiating via the mains and cables into the signal path
  • the forwarding of internal interference fields caused by the components themselves within the audio chain.
 
Due to the increase in wireless transmission technology and modern media use, e.g. WLAN, Power-LAN, cell phones, etc., increasingly complex high-frequency interference fields are radiating into the wired transmission path of the audio signal. Although shielded audio cables, which are often used, provide protection in the classic AF range, they draw the aforementioned high-frequency interference fields even more strongly into the sensitive signal path ("antenna effect"). Sensitive quality losses in the playback and a limited music enjoyment are the result. 
 

The BIDIRECTIONAL BARRIER enables for the first time a truly contemporary, highly effective interference field protection for the sound information transported in the cable. The pure and unaltered transmission of the signal results in significantly better dynamics, resolution, rhythm and fine detail. 

The full sound potential of the hi-fi components is preserved and the quality and performance of the music system can unfold 100%.

In case of very strong interference field loads, the effectiveness of the BIDIRECTIONAL BARRIER can be increased for the cables of the TS-LINE and the RESOLUTION LINE for the cleaning of external interference fields by an optional power amplifier, the CABLE PROTECTOR

For the RESOLUTION LINE, SCHNERZINGER also offers the optional SIGNAL PROTECTOR, an effective power amplifier for diverting the internal interference fields that have penetrated the signal path to the outside.

BETTER GEOMETRY - uncompromising cable design

In order to take full advantage of close-meshed interlocking constructions - without accepting their electromagnetic problems - SCHNERZINGER relies on a combination of intelligent superstructures and revolutionary technologies.

GEOMETRY - twisting, interlacing or parallel cable constructions

The design of a cable must be mechanically stable, create a homogeneous electromagnetic field between and around the conductors, and ensure the time-correct, and loss-free signal flow.

Efforts to use elaborate stranding and braiding techniques to counteract the problems of mutual interference often fail.

Twisted constructions reduce the susceptibility to interference, and typically result in a low inductance, which is usually targeted. However, as soon as current flows through a wire, its own electromagnetic field is generated. If the cores are twisted, the electromagnetic fields of the individual wires are close together over a large area, acting on each other and impairing the flow of electrons, which is why solid conductors are often used instead of stranded wires.

Braided constructions also typically reduce susceptibility to interference, but accept the effects of a constant but permanent change in the electrical environment of the individual conductors relative to each other, and it is this that leads to electromagnetic clutter, which in turn affects electron flow.

Parallel constructions with conductors running in parallel are not very resistant to external interference fields and favor the proximity effect, which also impairs the flow of electrons due to eddy currents that are generated.

Um einen gleichmäßigen, ungebremsten Elektronenfluss zu realisieren, sollten die elektrischen Parameter und die elektromagnetischen Felder zudem über die gesamte Länge möglichst konstant und homogen bleiben.
Die Anforderung an die mechanische Stabilität des Aufbaus wird dabei häufig unterschätzt, obwohl sie eine wichtige Funktion bei der Einhaltung konstanter Verhältnisse übernimmt.

In order to take full advantage of close-meshed interlocking constructions without accepting their electromagnetic problems, SCHNERZINGER relies on a combination of intelligent superstructures and revolutionary technology:

BETTER GEOMETRY uses a high-tech process to directly absorb electrosmog and virtually neglect resulting electromagnetic problems.

CABLE COATING – static problem catcher

Plastic fabric hoses are used by many manufacturers as outer sheathing. They look fancy, are inexpensive, and make manufacturing easier. But the fact is that the outer jacket definitely affects the sound quality of a cable.
In the case of plastics, for example, static charges can occur that impair electron transport. 

As a so-called "tuning measure", antistatic agents are then often offered as accessories to counteract the inadequacies of these materials.

We therefore deliberately dispense almost entirely with plastic fabric tubes, which may make a cable appear professionally manufactured, but in our opinion do not belong in a sonically consistent development chain.

BETTER FLOW -

The BETTER FLOW principle, through the extraordinary quality of the SCHNERZINGER ATOMIC BONDING conductor material and the consistent use of the highest quality bonding techniques and components, plays a major role in ensuring the unique reproduction quality and special features of SCHNERZINGER CABLES.

CONDUCTOR MATERIAL GRADE

Conventional untreated conductor material consists of many short crystalline grain structures, which furthermore conditional of manufacturing are laying in an inappropriate assembly. So to some extend the information has to find its diffuse way through many grain structures. Flowing through the grain boundary junctions from grain to grain implies an enormous resistance potential und thus causes a slowed down signal transmission. In addition information transmission virtually swirls in the grain boundary voids, so tones belonging together are time delayed and torn apart. Above all grain boundary voids allow deformations of the grain structure. This in turn may result in grain contact points, whose resonances may distort the information.

The SCHNERZINGER ATOMIC BONDING conductor material minimizes these sound-influencing effects by providing a permanently compact and enormously homogeneous microstructure of the conductor.

 

CONNECTOR - COMPONENTS, MATERIAL

Our research shows, that the parts performance potential is primarily determined by the crystalline structure of the deployed material rather than by the material itself. Performance deficits because of a non-optimum crystalline material structure of a connector plug may be compensated via clever actions.
With many connector plugs in the audio domain a layer of gold, silver, rhodium, palladium etc. will be added to the conducting material. This improves electrical contact and - via the distinct character of the particular plating - it furthermore allows for compensation of deficits.

But we strive for the solution, not just a compensation of a problem, so we employ connector plugs that are adjusted to the fabric of the SCHNERZINGER CONDUCTOR via the complex process ATOMIC BONDING. We disassemble all plugs into their individual parts and replace the contact pins by ATOMIC BONDING formatted pins. To perfectly protect the contact pins against interfering fields and to establish double operational reliability, the plug receives a two-shelled housing. To reduce contact resistance, after assembly plugs and conductor together will be ATOMIC BONDING processed once again.

Compared to the complexity and effect of these actions the significance of the original material characteristic is secondary.

The decision in favor of the now employed connector plugs was done after a multitude of comparisons utilizing the best respected plugs and sockets of the world market.

Price and reputation of the tested devices were of minor importance, as the costs of ATOMIC BONDING by far exceed the costs of expensive plugs.

We explicitly indicate, that - because of the structural adjustment of plugs and conductor material - any back fitting to other plugs will drastically degrade sound quality, thus irreparably destroy the SCHNERZINGER original connection.